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LETTER TO THE EDITOR 

Absorption probability distribution for rough surfaces 

M K Wilkinson? and R BrakS 
t Department of Physics, King's College, Strand, London WCZR ZLS, UK 
$ Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford 
OX1 3NP. UK 

Received 5 December 1986 

Abstract. We calculate the absorption probability distribution for particles diffusing onto 
perfectly absorbing boundaries. The boundaries studied are rough but not fractal; neverthe- 
less, non-classical behaviour is evident in the singularities of the measure and their 
distribution. 

The phenomenon of multifractality has recently attracted considerable attention. The 
existence of an infinite set of exponents characterising the moments of a measure has 
been discerned in many diverse problems including fully developed turbulence (Benzi 
et a1 1984), localisation (Castellani and Peliti 1986), dynamical systems (Benzi et al 
1984, 1985, Jensen et a1 1985, Halsey et a1 1986a), diffusion-limited aggregation (DLA) 
(Meakin et a1 1985, Turkevitch and Scher 1985, Amitrano et a1 1986, Halsey et a1 
1986b, Meakin 1986a) and resistor networks (de Arcangelis et al 1985, Blumenfeld et 
a1 1986). 

This activity has stimulated, and is partly a consequdnce of, a general theory for 
fractal measures (Kadanoff 1986, Halsey et a1 1986a), of which we make use here. 
One imagines the object divided into N pieces of length L and the measure for the 
ith piece equal to p i  ( i  = 1, . . . , N). Then the qth moment of the probability measure 
is defined by 

M , = C p P .  (1) 

The dimension Dq associated with the moment M, is defined by (Hentschel and 
Procaccia 1983) 

1 %  D, = lim - 
L+O q-1 In L 

and for the problem studied here this is equivalent to the 0, defined by Halsey et a1 
(1986a). The singularities of the measure have strength 

and are distributed over sets of dimension 

f ( a ( q ) )  = qa(q) - (4 - 1 ; q .  (4) 
The form of these functions is characteristic of the problem under consideration. 
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In this letter we calculate the absorption probability distribution {pi} for particles 
diffusing onto a perfectly absorbing boundary. The boundary is ‘rough’ and the 
probability of absorption at site i is a strong function of the site’s position. To control 
the roughness, the boundaries considered here are the successive stages in the recursive 
construction of the well known Koch curve. There is, in consequence, no averaging 
over configurations as in, say, DLA. The level 1 recursion is shown in figure 1. The 
sites of our boundary are the vertices of the Koch construction. Periodic boundary 
conditions are imposed so that, in figure 1, A is a neighbour of B and site C is deleted. 
One imagines particles diffusing from a height y = X along the bonds of a triangular 
lattice and onto the Koch boundary. If a particle diffuses above height X it is considered 
to have ‘died’. (Naturally the choice of height X has some effect on the distribution 
{ p i } ,  although for large enough X the effect would’ be small; we will consider the 
influences of boundary conditions fully in a subsequent paper.) This model is pertinent 
to the study of DLA and also to catalysis (see below). 

It is well known that the adjacency matrix of a graph raised to a power n results 
in a matrix whose elements are the number of distinct paths between the vertices of 
the graph. Using this fact one can easily determine { p , }  by multiplying together matrices 
for a graph representing the whole lattice. More specifically, if p,)(  n) is the probability 
that a diffusing particle initially at site i arrives, after n steps, at site j ,  then 

and A is the adjacency matrix normalised so that 

a,. = 1 for site i not on boundary 

for i on boundary. 

J 

a,, = 0 
( 7 )  

Making use of (2)-(4) one determines the ‘multifractal’ nature of this problem. 
Results are shown in figures 2 and 3. I t  is not easy, when we use the above method, 
to proceed to higher levels of recursion because of the computer resources required. 
We are presently assessing the feasibility of other approaches; our preliminary Monte 
Carlo results appear promising. The similarity between figure 3 and a corresponding 
graph for small DLA clusters (Amitrano er a/ 1986) should be noted. Notice that for 
large q 

( 8 )  ( 9  - 1)D, + q In Pm‘txlln L = qa,,, 

1x:y:Ol 

Figure 1. Level 1 recwsion. 

I X - X ,  
y =  01 
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Figure 3. Dependence of dimension f on singularity strength a. Again labels 1 and 2 refer 
to the recursion level. 

and for large negative q 

( q - l ) D q + q  lnpminlln L = q a m a x .  (9) 
A single power law singularity in the measure has ( q  - l)Dq linearly dependent on q 
(Halsey er a1 1986a). Meakin et a1 (1986) predict, on that basis, that a non-fractal 
object should show a linear dependence of ( q  - l)Dq on q for q larger than some 
critical value and that Dq = 1 below. In contrast, our calculations show that ( q  - l)Dq 
is, for intermediate q, not linear in q and there is a smooth crossover between the 
extreme linear behaviours ((8) and (9)). This difference arises because, although our 
boundaries are non-fractal, they are nevertheless associated with a range of power law 
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Table 1. 

In S 

In k,/ k, level 1 level 2 

-20 
- 19 
-18 
-17 
-16 
-15 
-14 
-13 
-12 
-11 
-10 
-9 
-8 
-7 
-6 
-5 
-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

17.227 441 3 
16.227 441 4 
15.227 441 7 
14.227 442 5 
13.227 4447 
12.227 450 7 
11.227 466 8 
10.227 510 7 
9.227 629 84 
8.227 953 53 
7.228 83 1 27 
6.231 201 78 
5.237 533 74 
4.253 966 54 
3.293 674 92 
2.375 876 49 
1.507 41 1 60 
0.665 641 32 

-0.180 834 71 
-1.056 565 25 
-1.974 521 58 
-2.930 979 39 
-3.91 1 684 68 
-4.903 995 06 
-5.901 075 86 
-6.899 989 15 
-7.899 587 60 
-8.899 439 63 
-9.899 385 17 

-10.899 365 1 
-11.899 357 8 
-12.899 355 0 
-13.899 354 0 
-14.899 353 7 
-15.899 353 5 
-16.899 353 5 
- 17.899 353 5 
-18.899 353 5 
-19.899 353 5 
-20.899 353 5 
-21.899 353 5 

15.841 121 8 
14.841 1233 
13.841 127 4 
12.841 138 4 
11.841 168 5 
10.841 250 1 
9.841 471 97 
8.842 073 82 
7.843 701 29 
6.848 063 25 
5.859 484 79 
4.887 702 59 
3.949 040 31 
3.056 090 08 
2.202 094 66 
1.373 444 00 
0.561 343 50 

-0.252 61 1 70 
-1.097 381 98 
-1.993 053 75 
-2.936 611 46 
-3.91 1 085 79 
-4.900 781 64 
-5.896 846 73 
-6.895 378 41 
-7.894 835 36 
-8.894 635 20 
-9.894 561 51 

-10.894 534 4 
-1 1.894 524 4 
-12.894 520 7 
-13.894 519 4 
-14.894 518 9 
-15.894518 7 
-16.894 5186 
-17.894 518 6 
-18.894 518 6 
-19.894 518 6 
-20.894 518 6 
-21.894 5186 
-22.894 518 6 

singularities. As the recursion level goes to infinity the boundary becomes fractal and 
one would expect a continuous distribution of singularities. The closeness of the curves 
in figure 3 intimates that the distribution of singularities for the limit Koch curve may 
not be too dissimilar from the low-level approximations obtained after only a few 
recursions. 
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We now briefly discuss a practical application of the calculated distribution { p i } .  

A + S - * A ,  ( l o a )  

Ao+  B ( l o b )  

A + A , +  C. (10c) 

( I O U )  represents the adsorption of an A molecule onto a catalyst surface ( S ) .  Reaction 
( l o b )  is the conversion of adsorbed A molecules into B molecules with rate constant 
k ,  . The B molecules are, on their formation, immediately desorbed. Reaction (1Oc) 
represents the interaction of an A molecule with a previously adsorbed A molecule 
to produce a C molecule, which we assume is also desorbed promptly. Classically, 
the selectivity (i.e. ratio of C to B produced) of the catalyst should be inversely 
proportional to k , .  Meakin found that for a particular fractal catalyst Sa k;0.79. In 
terms of the { p i } ,  S is given by (see Meakin 1986b) 

Following Meakin (1986b), we consider the reaction scheme 

where kf is the input flux of particles. This function is given in table 1. Note the 
region in the centre of the range where S is not linearly dependent on 1/ k ,  . Outside 
this central region S is proportional to 1 /  k ,  , as expected for a smooth catalyst. 

It is apparent from the above discussion that the transition from ‘rough’ behaviour 
to genuine fractal behaviour is a gradual one. In this context it is worthwhile recalling 
that even the largest simulated DLA clusters (for example) only have ‘fractal’ properties 
over appropriate length scales. The surprise is that incipient multifractal behaviour 
can be observed even for very low levels of recursion when the boundary is only 
beginning to look fractal. Figure 3 is both an extrapolation and interpolation and it 
is interesting that there appears to be only a small dependence on the level of recursion. 
We intend to go on and further investigate the crossover between rough and fractal 
boundaries. 

MKW is grateful to the SERC for financial support. 
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