Absorption probability distribution for rough surfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20 L307
(http://iopscience.iop.org/0305-4470/20/5/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:24

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Absorption probability distribution for rough surfaces

M K Wilkinson \dagger and R Brak \ddagger
\dagger Department of Physics, King's College, Strand, London WC2R 2LS, UK \ddagger Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK

Received 5 December 1986

Abstract

We calculate the absorption probability distribution for particles diffusing onto perfectly absorbing boundaries. The boundaries studied are rough but not fractal; nevertheless, non-classical behaviour is evident in the singularities of the measure and their distribution.

The phenomenon of multifractality has recently attracted considerable attention. The existence of an infinite set of exponents characterising the moments of a measure has been discerned in many diverse problems including fully developed turbulence (Benzi et al 1984), localisation (Castellani and Peliti 1986), dynamical systems (Benzi et al 1984, 1985, Jensen et al 1985, Halsey et al 1986a), diffusion-limited aggregation (DLA) (Meakin et al 1985, Turkevitch and Scher 1985, Amitrano et al 1986, Halsey et al 1986b, Meakin 1986a) and resistor networks (de Arcangelis et al 1985, Blumenfeld et al 1986).

This activity has stimulated, and is partly a consequence of, a general theory for fractal measures (Kadanoff 1986, Halsey et al 1986a), of which we make use here. One imagines the object divided into N pieces of length L and the measure for the i th piece equal to $p_{i}(i=1, \ldots, N)$. Then the q th moment of the probability measure is defined by

$$
\begin{equation*}
M_{q}=\sum p_{i}^{q} . \tag{1}
\end{equation*}
$$

The dimension D_{q} associated with the moment M_{q} is defined by (Hentschel and Procaccia 1983)

$$
\begin{equation*}
D_{q}=\lim _{L \rightarrow 0} \frac{1}{q-1} \frac{\ln M_{q}}{\ln L} \tag{2}
\end{equation*}
$$

and for the problem studied here this is equivalent to the D_{q} defined by Halsey et al (1986a). The singularities of the measure have strength

$$
\begin{equation*}
\alpha(q)=\frac{\mathrm{d}}{\mathrm{~d} q}\left[(q-1) D_{q}\right] \tag{3}
\end{equation*}
$$

and are distributed over sets of dimension

$$
\begin{equation*}
f(\alpha(q))=q \alpha(q)-(q-1) D_{q} . \tag{4}
\end{equation*}
$$

The form of these functions is characteristic of the problem under consideration.

In this letter we calculate the absorption probability distribution $\left\{p_{i}\right\}$ for particles diffusing onto a perfectly absorbing boundary. The boundary is 'rough' and the probability of absorption at site i is a strong function of the site's position. To control the roughness, the boundaries considered here are the successive stages in the recursive construction of the well known Koch curve. There is, in consequence, no averaging over configurations as in, say, dla. The level 1 recursion is shown in figure 1. The sites of our boundary are the vertices of the Koch construction. Periodic boundary conditions are imposed so that, in figure $1, \mathrm{~A}$ is a neighbour of B and site C is deleted. One imagines particles diffusing from a height $y=X$ along the bonds of a triangular lattice and onto the Koch boundary. If a particle diffuses above height X it is considered to have 'died'. (Naturally the choice of height X has some effect on the distribution $\left\{p_{i}\right\}$, although for large enough X the effect would be small; we will consider the influences of boundary conditions fully in a subsequent paper.) This model is pertinent to the study of dLA and also to catalysis (see below).

It is well known that the adjacency matrix of a graph raised to a power n results in a matrix whose elements are the number of distinct paths between the vertices of the graph. Using this fact one can easily determine $\left\{p_{i}\right\}$ by multiplying together matrices for a graph representing the whole lattice. More specifically, if $p_{i j}(n)$ is the probability that a diffusing particle initially at site i arrives, after n steps, at site j, then

$$
\begin{equation*}
p_{i}=\left\langle\sum_{n} p_{k i}(n)\right\rangle_{\text {staring points } k} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\{p_{i j}(n)\right\}=A^{n} \tag{6}
\end{equation*}
$$

and A is the adjacency matrix normalised so that

$$
\begin{array}{ll}
\sum_{j} a_{i j}=1 & \text { for site } i \text { not on boundary } \tag{7}\\
a_{i j}=0 & \text { for } i \text { on boundary. }
\end{array}
$$

Making use of (2)-(4) one determines the 'multifractal' nature of this problem. Results are shown in figures 2 and 3. It is not easy, when we use the above method, to proceed to higher levels of recursion because of the computer resources required. We are presently assessing the feasibility of other approaches; our preliminary Monte Carlo results appear promising. The similarity between figure 3 and a corresponding graph for small dLa clusters (Amitrano et al 1986) should be noted. Notice that for large q

$$
\begin{equation*}
(q-1) D_{q} \rightarrow q \ln p_{\max } / \ln L=q \alpha_{\min } \tag{8}
\end{equation*}
$$

Figure 1. Level 1 recu;sion.

Figure 2. The exponent D_{q}. The labels 1 and 2 refer to the level of the Koch curve recursion.

Figure 3. Dependence of dimension f on singularity strength α. Again labels 1 and 2 refer to the recursion level.
and for large negative q

$$
\begin{equation*}
(q-1) D_{q} \rightarrow q \ln p_{\min } / \ln L=q \alpha_{\max } . \tag{9}
\end{equation*}
$$

A single power law singularity in the measure has $(q-1) D_{q}$ linearly dependent on q (Halsey et al 1986a). Meakin et al (1986) predict, on that basis, that a non-fractal object should show a linear dependence of $(q-1) D_{q}$ on q for q larger than some critical value and that $D_{q}=1$ below. In contrast, our calculations show that $(q-1) D_{q}$ is, for intermediate q, not linear in q and there is a smooth crossover between the extreme linear behaviours ((8) and (9)). This difference arises because, although our boundaries are non-fractal, they are nevertheless associated with a range of power law

Table 1.

$\ln k_{1} / k_{f}$	$\ln S$	
	level 1	level 2
-20	17.2274413	15.8411218
-19	16.2274414	14.8411233
-18	15.2274417	13.8411274
-17	14.2274425	12.8411384
-16	13.2274447	11.8411685
-15	12.2274507	10.8412501
-14	11.2274668	9.84147197
-13	10.2275107	8.84207382
-12	9.22762984	7.84370129
-11	8.22795353	6.84806325
-10	7.22883127	5.85948479
-9	6.23120178	4.88770259
-8	5.23753374	3.94904031
-7	4.25396654	3.05609008
-6	3.29367492	2.20209466
-5	2.37587649	1.37344400
-4	1.50741160	0.56134350
-3	0.66564132	-0.25261170
-2	-0.180 83471	-1.09738198
-1	-1.056565 25	-1.993 05375
0	-1.974 52158	-2.93661146
1	-2.930979 39	-3.911 08579
2	-3.91168468	-4.900 78164
3	-4.903 99506	-5.89684673
4	-5.901 07586	-6.895 37841
5	-6.899989 15	-7.894835 36
6	-7.89958760	-8.894 63520
7	-8.899 43963	-9.894 56151
8	-9.899 38517	-10.894 5344
9	-10.899 3651	-11.894 5244
10	-11.8993578	-12.894 5207
11	-12.899 3550	-13.894 5194
12	-13.899 3540	-14.894 5189
13	-14.899 3537	-15.894 5187
14	-15.899 3535	-16.894 5186
15	-16.899 3535	-17.894 5186
16	-17.899 3535	-18.894 5186
17	-18.899 3535	-19.894 5186
18	-19.899 3535	-20.894 5186
19	-20.899 3535	-21.894 5186
20	-21.899 3535	-22.894 5186

singularities. As the recursion level goes to infinity the boundary becomes fractal and one would expect a continuous distribution of singularities. The closeness of the curves in figure 3 intimates that the distribution of singularities for the limit Koch curve may not be too dissimilar from the low-level approximations obtained after only a few recursions.

We now briefly discuss a practical application of the calculated distribution $\left\{p_{i}\right\}$. Following Meakin (1986b), we consider the reaction scheme

$$
\begin{align*}
& A+S \rightarrow A_{a} \tag{10a}\\
& A_{a} \rightarrow B \tag{10b}\\
& A+A_{a} \rightarrow C \tag{10c}
\end{align*}
$$

(10a) represents the adsorption of an A molecule onto a catalyst surface (S). Reaction ($10 b$) is the conversion of adsorbed A molecules into B molecules with rate constant k_{1}. The B molecules are, on their formation, immediately desorbed. Reaction (10c) represents the interaction of an A molecule with a previously adsorbed A molecule to produce a C molecule, which we assume is also desorbed promptly. Classically, the selectivity (i.e. ratio of C to B produced) of the catalyst should be inversely proportional to k_{1}. Meakin found that for a particular fractal catalyst $S \propto k_{1}^{-0.79}$. In terms of the $\left\{p_{i}\right\}, S$ is given by (see Meakin 1986b)

$$
\begin{equation*}
S=\frac{k_{f} \Sigma p_{i}^{2} /\left(k_{1}+2 p_{i} k_{f}\right)}{k_{1} \Sigma p_{i} /\left(k_{1}+2 p_{i} k_{f}\right)} \tag{11}
\end{equation*}
$$

where k_{f} is the input flux of particles. This function is given in table 1. Note the region in the centre of the range where S is not linearly dependent on $1 / k_{1}$. Outside this central region S is proportional to $1 / k_{1}$, as expected for a smooth catalyst.

It is apparent from the above discussion that the transition from 'rough' behaviour to genuine fractal behaviour is a gradual one. In this context it is worthwhile recalling that even the largest simulated dLA clusters (for example) only have 'fractal' properties over appropriate length scales. The surprise is that incipient multifractal behaviour can be observed even for very low levels of recursion when the boundary is only beginning to look fractal. Figure 3 is both an extrapolation and interpolation and it is interesting that there appears to be only a small dependence on the level of recursion. We intend to go on and further investigate the crossover between rough and fractal boundaries.

MKW is grateful to the SERC for financial support.

References

Amitrano C, Coniglio A and di Liberto F 1986 Phys. Rev. Lett. 571016
Benzi R, Paladin G, Parisi G and Vulpiani A 1984 J. Phys. A: Math. Gen. 173521

- 1985 J. Phys. A: Math. Gen. 182157

Blumenfeld R, Meir Y, Harris A B and Aharony A 1986 J. Phys. A: Math. Gen. 19 L791
Castellini C and Peliti L 1986 J. Phys. A: Math. Gen. 19 L429
de Arcangelis L, Redner S and Coniglio A 1985 Phys. Rev. B 314725
Halsey T C, Jensen M H, Kadanoff L P, Procaccia I and Shraiman B I 1986a Phys. Rev. A 331141
Halsey T C, Meakin P and Procaccia I 1986b Phys. Rev. Lett. 56854
Hentschel H G E and Procaccia I 1983 Physica D 8435
Jensen M H, Kadanoff L P, Leibchaber A, Procaccia I and Stavans J 1985 Phys. Rev. Lett. 552798
Kadanoff L P 1986 On Growth And Form: Fractal And Non-fractal Patterns in Physics ed H E Stanley and N Ostrowsky (Dordrecht: Martinus Nijhoff) p 299
Meakin P 1986a Phys. Rev. A 34710
_ 1986b Chem. Phys. Lett. 123428
Meakin P, Coniglio A, Stanley H E and Witten T A 1986 Phys. Rev. A 343325
Meakin P, Stanley H E, Coniglio A and Witten T A 1985 Phys. Rev. A 322364
Turkevitch L A and Scher H 1985 Phys. Rev. Lett. 551026

